Northern Border University Faculty of Engineering First Semester 1436/1437, Mid Term Exam		Subject: Operations Research IE311 Date: 16/1/1437, Time allowed: 1.5 Hrs Total Marks: 10 Points Instructors: Dr. Mohamed Mostafa

Solve the Following Problems

1) Solve the Following LPP by graphical method.

Minimize: $Z=4 x_{1}+3 x_{2}$
Subject to the constraints

$$
\begin{aligned}
& 2 x_{1}+x_{2} \geq 10 \\
& -3 x_{1}+2 x_{2} \leq 6 \\
& x_{1}+x_{2} \geq 6 \\
& \text { And } x_{1}, x_{2} \geq 0
\end{aligned}
$$

2) A manufacturing company engaged in producing three types of products: A, B and C. The production department daily produces component sufficient to make 50 units of $\mathrm{A}, 25$ units of B and 30 units of C. The management is confronted with problem of optimizing the daily production of products in assembly department where only 100 man-hours are available daily to assemble the products. The following additional information is available.

Type of product	Profit contribution per unit of product (SR)	Assembly time per product (hrs)
A	12	0.8
B	20	1.7
C	45	2.5

The company has a daily order commitment for 20 units of product A and total of 15 units of B and C products. Formulates this problem as an LP model so as to maximize the total profit.
3) Solve the following LPP by Simplex Method

Maximize $Z=2 x_{1}+x_{2}+x_{3}$
Subject to the constraints

$$
\begin{aligned}
& 4 x_{1}+6 x_{2}+3 x_{3} \leq 8 \\
& 3 x_{1}-6 x_{2}-4 x_{3} \leq 1 \\
& 2 x_{1}+3 x_{2}-5 x_{3} \geq 4 \\
& \text { and } x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

Model Answer of Mid Term Exam Group [1]

Solution of Problem \#1

Solution of Problem \#2
LP model formulation: the data of the problem is summarized as follows:

Resources /	product type			total
	A	B	C	
Production capacity (units)	50	25	30	
Man hours per unit	0.8	1.7	2.5	100
Order commitment unit		20	15	
Profit contribution (Rs./unit)	12	20	45	

Decision variables: let $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3=$ numbers of units of products A, B and C to be produced respectively
The LP model
Maximize (total profit) $Z=12 \times 1+20 \times 2+45 \times 3$
Subject to the constraints
(a) labor and material constraints

$$
\begin{array}{rl}
0.8 \mathrm{x} 1+1.7 \times 2+2.5 & \mathrm{x} 3 \\
\mathrm{x} 1 & =<100 \\
& =<50 \\
& =<25 \\
\mathrm{x} 2 & =<30
\end{array}
$$

(b) order commitment constraints x 1
$>=20$
$\mathrm{x} 2 \quad+\mathrm{x} 3 \quad>=15$
$\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3>=0$

Solution of Problem \#3

Variable	Status	Value	
$\times 1$		Basic	
X2	Basic	1.2857	
X3	Basic	.4762	
slack 1	NONBasic	0	
slack 2	NONBasic	0	
surplus 3	NONBasic	0	
surplus 4	Basic	1.2857	
surplus 5	Basic	.4762	
Optimal Value (Z)		3.0476	

Note
Multiple optimal solutions exist

Model Answer of Mid Term Exam Group [2]

Solution of Problem \#1

Solution of Problem \#2

Resources /	product type			total
Constraints	A	B	C	
Production capacity (units)	50	25	30	100
Man hours per unit	0.8	1.7	2.5	
Order commitment unit		20	15	
Profit contribution (Rs./unit)	14	22	47	

Decision variables: let $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3=$ numbers of units of products A, B and C to be produced respectively

The LP model
Maximize (total profit) $Z=14 \mathrm{x} 1+22 \mathrm{x} 2+47 \mathrm{x} 3$
Subject to the constraints
(c) labor and material constraints

$$
\begin{aligned}
0.8 \times 1+1.7 \times 2+2.5 & \times 3 \\
\mathrm{x} 1 & =<100 \\
& =<50 \\
& =<25 \\
\mathrm{x} 2 & =<30
\end{aligned}
$$

(d) order commitment constraints x 1
$>=20$
$\mathrm{x} 2 \quad+\mathrm{x} 3 \quad>=15$
$\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3>=0$

Solution of Problem \#3

Equation form
Max $4 \mathrm{X} 1+3 \times 2+3 \times 3$
$4 \mathrm{X} 1+6 \times 2+3 \times 3<=10$
$3 \times 1-6 \times 2-4 \mathrm{X} 3<=3$
$2 \times 1+3 \times 2-5 \times 3>=6$
$\mathrm{X} 1>=0$
$\mathrm{X} 2>=0$

There is no feasible solution

